Exploiting Diversification in Gossip-Based Recommendation
نویسندگان
چکیده
In the context of Web 2.0, the users become massive producers of diverse data that can be stored in a large variety of systems. The fact that the users’ data spaces are distributed in many different systems makes data sharing difficult. In this context of large scale distribution of users and data, a general solution to data sharing is offered by distributed search and recommendation. In particular, gossip-based approaches provide scalability, dynamicity, autonomy and decentralized control. Generally, in gossip-based search and recommendation, each user constructs a cluster of “relevant” users that will be employed in the processing of queries. However, considering only relevance introduces a significant amount of redundancy among users. As a result, when a query is submitted, as the user profiles in each user’s cluster are quite similar, the probability of retrieving the same set of relevant items increases, and recall results are limited. In this paper, we propose a gossip-based search and recommendation approach that is based on a new clustering score, called usefulness, that combines relevance and diversity, and we present the corresponding new gossip-based clustering algorithm. We validate our proposal with an experimental evaluation using three datasets based on MovieLens, Flickr and LastFM. Compared with state of the art solutions, we obtain major gains with a three order of magnitude recall improvement when using the notion of usefulness regardless of the relevance score between two users used.
منابع مشابه
Performance Analysis of Healthcare Processes through Process Mining
is based on explicit personalization, by exploiting the scientists’ social networks, using gossip protocols that scale well. Relevance measures may be expressed based on similarities, users’ confidence, document popularity, rates, etc., and combined to yield different recommendation criteria. With P2Prec, each user can identify data (documents, annotations, datasets, etc.) provided by others an...
متن کاملExploiting the diversity of user preferences for recommendation
Diversity as a quality dimension for Recommender Systems has been receiving increasing attention in the last few years. This has been paralleled by an intense strand of research on diversity in search tasks, and in fact converging views on diversity theories and techniques from Information Retrieval and Recommender Systems have been put forward in recent work. In this paper we research diversit...
متن کاملExploiting Regression Trees as User Models for Intent-Aware Multi-attribute Diversity
Diversity in a recommendation list has been recognized as one of the key factors to increase user’s satisfaction when interacting with a recommender system. Analogously to the modelling and exploitation of query intent in Information Retrieval adopted to improve diversity in search results, in this paper we focus on eliciting and using the profile of a user which is in turn exploited to represe...
متن کاملGGRA: a grouped gossip-based reputation aggregation algorithm
An important issue in P2P networks is the existence of malicious nodes that decreases the performance of such networks. Reputation system in which nodes are ranked based on their behavior, is one of the proposed solutions to detect and isolate malicious (low ranked) nodes. Gossip Trust is an interesting previously proposed algorithm for reputation aggregation in P2P networks based on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014